**Toolbox:**

- Let f(x) g(x) and h(x) be the three functions
- Then composition of functions is associative if $ho(gof)=(hog)of$

$ho(gof)(x)=h(gof(x))$

$=h(g(f(x)) \forall x$

$(hog)of (x)=hog(f(x))$

$=h(g(f(x)))$

$ho(gof)(x)=(hog)of(x)$

Hence composition of function is associative

The given statement is 'True'