Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  EAMCET  >>  Mathematics
0 votes

A number n is chosen at random from $S=\{1,2,3,.....,50\}$.Let $A= \bigg \{ n \in S:n +\large\frac{50}{n} $$ > 27 \bigg\}$$,B= (n \in S:n$ is a Prime) and $C=\{n \in S:n \;is\; a\; square \}$. Then correct order of their probabilities is :

$(a)\; P(A) < P(B) < P(C) \\(b)\; P(A) > P(B) > P(C) \\ (c)\; P(B) < P(A) < P(C) \\ (d)\; P(A) < P(C) < P(B) $
Can you answer this question?

1 Answer

0 votes
$(b)\; P(A) > P(B) > P(C)$
answered Feb 27, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App