logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  EAMCET  >>  Mathematics
0 votes

A number n is chosen at random from $S=\{1,2,3,.....,50\}$.Let $A= \bigg \{ n \in S:n +\large\frac{50}{n} $$ > 27 \bigg\}$$,B= (n \in S:n$ is a Prime) and $C=\{n \in S:n \;is\; a\; square \}$. Then correct order of their probabilities is :

$(a)\; P(A) < P(B) < P(C) \\(b)\; P(A) > P(B) > P(C) \\ (c)\; P(B) < P(A) < P(C) \\ (d)\; P(A) < P(C) < P(B) $
Can you answer this question?
 
 

1 Answer

0 votes
$(b)\; P(A) > P(B) > P(C)$
answered Feb 27, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...