logo

Ask Questions, Get Answers

X
 
Home  >>  EAMCET  >>  Mathematics

A number n is chosen at random from $S=\{1,2,3,.....,50\}$.Let $A= \bigg \{ n \in S:n +\large\frac{50}{n} $$ > 27 \bigg\}$$,B= (n \in S:n$ is a Prime) and $C=\{n \in S:n \;is\; a\; square \}$. Then correct order of their probabilities is :

$(a)\; P(A) < P(B) < P(C) \\(b)\; P(A) > P(B) > P(C) \\ (c)\; P(B) < P(A) < P(C) \\ (d)\; P(A) < P(C) < P(B) $

1 Answer

$(b)\; P(A) > P(B) > P(C)$
answered Feb 27, 2014 by meena.p
 

Related questions

...