logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $\tan^{-1}x+\tan^{-1}y=\frac{4\pi}{5},then\;\cot^{-1}x+\cot^{-1}y$ equals:

\[(A)\quad\frac{\pi}{5}\quad(B)\quad\frac{2\pi}{5}\quad(C)\quad\frac{3}{5}\quad(D)\quad{\pi}\]
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • \( tan^{-1}x+cot^{-1}x=\large\frac{\pi}{2}\)
Ans - (A) \( \frac{\pi}{5} \)
From the above formula we can write
\(cot^{-1}x=\large\frac{\pi}{2}-tan^{-1}x\:and\:cot^{-1}y=\large\frac{\pi}{2}-tan^{-1}y\)
\(\Rightarrow\: cot^{-1}x+cot^{-1}y=\large\frac{\pi}{2}- tan^{-1}x+\large\frac{\pi}{2}- tan^{-1}y\)
\(=\pi-(tan^{-1}x+tan^{-1}y)=\pi-\large\frac{4\pi}{5}=\large\frac{\pi}{5}\)

 

answered Feb 18, 2013 by thanvigandhi_1
edited Mar 16, 2013 by thanvigandhi_1
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...