logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  EAMCET  >>  Mathematics
0 votes

If $f: R \to R $ is defined by $f(x)= \left\{ \begin{array}{1 1} \large\frac{x+2}{x^2-3x+2} & \quad if & \quad x\in R -[-1,-2] \\ -1 & \quad if & \quad x=-2 \\ 0 & \quad if & \quad x=-1 \end{array} \right. $ then $f$ is continuous on the set :

\[\begin {array} {1 1} (a)\;R & \quad (b)\;R-\{-2\} \\ (c)\;R-\{-1\} & \quad (d)\;R-\{-1,-2\} \end {array}\]

Can you answer this question?
 
 

1 Answer

0 votes
(c) R-{-1}
answered Feb 27, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...