Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
0 votes

If $a,b,c$ are lengths of sides of a $\Delta\:ABC$ and for any non collinear vectors $\overrightarrow u\:\:and\:\:\overrightarrow v$ if $(a-b)\overrightarrow u+(b-c)\overrightarrow v+(c-a)(\overrightarrow u\times\overrightarrow v)=0$, then the $\Delta$ is ?

Can you answer this question?

1 Answer

0 votes
  • If three vectors $\overrightarrow x,\:\overrightarrow y,\:\overrightarrow z$ are non coplanar, then $a\overrightarrow x+b\overrightarrow y+c\overrightarrow z=\overrightarrow 0$ $\Rightarrow\:a=b=c=0$
Since $\overrightarrow u,\:\:and\:\:\overrightarrow v$ are non collinear,
$(a-b)\overrightarrow u+(b-c)\overrightarrow v +(c-a)(\overrightarrow u\times\overrightarrow v)$ are coplanar.
$\Rightarrow\: (a-b)\overrightarrow u+(b-c)\overrightarrow v +(c-a)(\overrightarrow u\times\overrightarrow v)=\overrightarrow 0$
$\therefore$ The $\Delta\:ABC$ is equilateral.
answered Nov 13, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App