logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Trignometry

If $x\sin^3\theta+y\cos^3\theta=\sin\theta\cos\theta$ and $x\sin\theta=y\cos\theta$ then $x^2+y^2$ is

$\begin{array}{1 1}(a)\;2&(b)\;3\\(c)\;1&(d)\;4\end{array}$

1 Answer

Given :
$x\sin^3\theta+y\cos^3\theta=\sin\theta\cos\theta$------(1)
$x\sin\theta=y\cos\theta$
Let $x\sin\theta=y\cos\theta=k$-------(2)
We can write equation (1) as
$k(\sin^2\theta+\cos^2\theta)=\sin\theta\cos\theta)$
$k(1)=\sin\theta\cos\theta$
$\sin\theta\cos\theta=k$
From equation (2) we have
$x=\cos\theta,y=\sin\theta$
$x^2=\cos^2\theta,y^2=\sin^2\theta$
$\Rightarrow x^2+y^2=1$
Hence (c) is the correct option.
answered Nov 15, 2013 by sreemathi.v
 

Related questions

...