Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Find the maximum and minimum value of $\sin^6x+\cos^6x$

$\begin{array}{1 1}(a)\;1,0&(b)\;1,\large\frac{1}{4}\\(c)\;0,1&(d)\;2,1\end{array}$

Can you answer this question?

1 Answer

0 votes
Let $Y=\sin^6x+\cos^6x$
$\qquad=1-\large\frac{3}{4}$$(\sin 2x)^2$
When $(\sin 2x)^2$ is minimum (i.e) 0 then y will be maximum and when $(\sin 2x)^2$ is maximum (i.e) 1 then $y$ will be minimum.
$Y_{max}=1-\large\frac{3}{4}$$\times 0=1$
$Y_{min}=1-\large\frac{3}{4}$$\times 1=\large\frac{1}{4}$
Hence (b) is the correct answer.
answered Nov 18, 2013 by sreemathi.v
edited Mar 22, 2014 by sharmaaparna1
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App