Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Let $ABC$ be a triangle such that $\angle ACB=\large\frac{\pi}{6}$.Let $a,b$ and $c$ denote the lengths of the sides opposite to $A,B$ and $C$ respectively.The value of $x$ for which $a=x^2+x+1,b=x^2-1$ and $c=2x+1$ is

$\begin{array}{1 1}(a)\;-(2+\sqrt 3)&(b)\;1+\sqrt 3\\(c)\;2+\sqrt 3&(d)\;4\sqrt 3\end{array}$

Can you answer this question?

1 Answer

0 votes
$\large\frac{\sqrt 3}{2}=\frac{(x^2+x+1)^2+(x^2-1)^2-(2x+1)^2}{2(x^2+x+1)(x^2-1)}$
$\Rightarrow (x+2)(x+1)(x-1)x+(x^2-1)^2=\sqrt 3(x^2+x+1)(x^2-1)$
$\Rightarrow x^2+2x+(x^2-1)=\sqrt 3(x^2+x+1)$
$\Rightarrow (2-\sqrt 3)x^2+(2-\sqrt 3)x-(\sqrt 3+1)=0$
$x=(1+\sqrt 3)$
Hence (b) is the correct option.
answered Nov 18, 2013 by sreemathi.v
edited Mar 21, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App