Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Trignometry
0 votes

Find all positive integral solutions of the equation $\tan^{-1}x+\cot^{-1}y=\tan^{-1}3$

$\begin{array}{1 1}(a)\;x=1,y=2&(b)\;x=0,y=1\\(c)\;x=2,y=3&(d)\;x=2,y=3\end{array}$

Can you answer this question?

1 Answer

0 votes
Step 1:
$\Rightarrow \tan^{-1}3$
$\Rightarrow \large\frac{xy+1}{y-x}$$=3$
$\Rightarrow xy+1=3(y-x)$
$\Rightarrow xy+1=3y-3x$
$\Rightarrow xy-3y=-3x-1$
$\Rightarrow y[x-3]=-[3x+1]$
Step 2:
When $x\rightarrow +ve$ numerator is +ve.
For $y$ to be +ve denominator must be +ve.
(i.e) $3-x>0$
$x< 3\Rightarrow x=1,2$
Substituting the value of $x$ in (1) we get $y=2,7$
$\Rightarrow$ solutions are $x=1,y=2$
$\Rightarrow x=2,y=7$
Hence (a) is the correct answer.
answered Nov 18, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App