Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
+1 vote

The greatest value of $|\overrightarrow a+\overrightarrow b|+|\overrightarrow a-\overrightarrow b|$ where $\overrightarrow a\:\:and\:\:\overrightarrow b$ are unit vectors is ?

Can you answer this question?

1 Answer

0 votes
  • Max. value of $acos\theta+bsin\theta= \sqrt {a^2+b^2}$
$|\overrightarrow a+\overrightarrow b|^2=|\overrightarrow a|^2+|\overrightarrow b|^2+2|\overrightarrow a|\overrightarrow b|cos\theta$
$\Rightarrow\:|\overrightarrow a+\overrightarrow b|=2cos\large\frac{\theta}{2}$
Similarly $|\overrightarrow a-\overrightarrow b|^2=4sin^2\large\frac{\theta}{2}$
$\Rightarrow\:|\overrightarrow a-\overrightarrow b|=2sin\large\frac{\theta}{2}$
$\therefore\:$ Max. value of $|\overrightarrow a+\overrightarrow b| +|\overrightarrow a-\overrightarrow b|$ is
Max. Value of $2(cos\large\frac{\theta}{2}$$+sin\large\frac{\theta}{2})$
$=2\sqrt 2$
answered Nov 18, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App