Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

Given that $x=-9$ is a root of $\begin{vmatrix}x&3&7\\2 &x&2\\7&6&x\end{vmatrix}$ = 0, the other two roots are

$\begin{array}{1 1}(A)1,7 \\ (B) 3,7 \\ (C) 2,7 \\(D) 7,0 \end{array}$

Can you answer this question?

1 Answer

0 votes
Given :
$\begin{vmatrix}x&3&7\\2 &x&2\\7&6&x\end{vmatrix}=0$
Operating $R_1\rightarrow R_1+R_2+R_3$ we get,
$\begin{vmatrix}x+9&x+9&x+9\\2&x&2\\7 &6&x\end{vmatrix}=0$
$\Rightarrow (x+9)\begin{vmatrix}1&1&1\\2&x&2\\7&6&x\end{vmatrix}$=0
Operating $C_2\rightarrow C_2-C_1$
$C_3\rightarrow C_3-C_1$
$\Rightarrow (x+9)\begin{vmatrix}1 &0&0\\2 &x-2&0\\7 &-1&x-7\end{vmatrix}=0$
Expanding along $R_1$
$\Rightarrow (x+9)(x-2)(x-7)=0$
$\Rightarrow x=-9,2,7$
Hence the other two roots are 2 and 7.
Hence (c) is the correct answer.
answered Nov 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App