Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

Let $\omega=-\large\frac{1}{2}$$+i\large\frac{\sqrt 3}{2}$.Then the value of the determinant $\begin{vmatrix}1&1&1\\1&-1-\omega^2&\omega^2\\1&\omega^2&\omega^4\end{vmatrix}$ is


Can you answer this question?

1 Answer

0 votes
Given that
$\omega=-\large\frac{1}{2}$$+i\large\frac{\sqrt 3}{2}$
$\omega^2=-\large\frac{1}{2}$$-i\large\frac{\sqrt 3}{2}$
Also $1+\omega+\omega^2=0,\omega^3=1$
Now given determinant is
$\Delta=\begin{vmatrix}1 &1&1\\1&-1-\omega^2&\omega^2\\1 &\omega^2&\omega^4\end{vmatrix}$
$\;\;\;=\begin{vmatrix}1 &1&1\\1&\omega&\omega^2\\1 &\omega^2&\omega\end{vmatrix}$
Expanding along $C_1$ we get
Hence (b) is the correct answer.
answered Nov 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App