Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

If $A=\begin{vmatrix}\alpha &0\\1 &1\end{vmatrix}$ and $B=\begin{vmatrix}1 &0\\5 &1\end{vmatrix}$then the value of $\alpha$ for which $A^2=B$ is


Can you answer this question?

1 Answer

0 votes
Given that :
$A=\begin{vmatrix}\alpha &0\\1 &1\end{vmatrix}$ and $B=\begin{vmatrix}1 &0\\5 &1\end{vmatrix}$
$\Rightarrow \begin{vmatrix}\alpha &0\\1 &1\end{vmatrix}\begin{vmatrix}\alpha &0\\1 &1\end{vmatrix}=\begin{vmatrix}1 &0\\5 &1\end{vmatrix}$
$\Rightarrow \begin{vmatrix}\alpha^2&0\\\alpha+1&1\end{vmatrix}=\begin{vmatrix}1 &0\\5&1\end{vmatrix}$
$\Rightarrow \alpha^2=1$ and $\alpha+1=5$
$\Rightarrow \alpha=\pm 1$ and $\alpha=4$
There is no common value.
There is no real value of $\alpha$ for which $A^2=B$
Hence (d) is the correct answer.
answered Nov 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App