Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

The determinant $\begin{vmatrix}a&b&a\alpha+b\\b&c&b\alpha+c\\a\alpha+b&b\alpha+c&0\end{vmatrix}$ is equal to zero if

$\begin{array}{1 1}(a)\;a,b,c\;are\;in\; A.P\\(b)\;a,b,c\;are\;in \;G.P\\(c)\;a,b,c\;are\;H.P\\(d)\;\alpha\;is\;a\;root\;of\;the\;equation\;ax^2+bx+c=0\end{array}$

Can you answer this question?

1 Answer

0 votes
Given :
Operating $C_3\rightarrow C_3-C_1\alpha-C_2$
We get,
$\begin{vmatrix}a &b&0\\b&c&0\\a\alpha+b&b\alpha+c&-(a\alpha^2+b\alpha+b\alpha+c)\end{vmatrix}=0$
$\Rightarrow (ac-b^2)=0$ or $a\alpha^2+2b\alpha+c=0$
$\Rightarrow a,b,c$ are in G.P
Hence (b) is the correct answer.
answered Nov 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App