logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

The determinant $\begin{vmatrix}a&b&a\alpha+b\\b&c&b\alpha+c\\a\alpha+b&b\alpha+c&0\end{vmatrix}$ is equal to zero if

$\begin{array}{1 1}(a)\;a,b,c\;are\;in\; A.P\\(b)\;a,b,c\;are\;in \;G.P\\(c)\;a,b,c\;are\;H.P\\(d)\;\alpha\;is\;a\;root\;of\;the\;equation\;ax^2+bx+c=0\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Given :
$\begin{vmatrix}a&b&a\alpha+b\\b&c&b\alpha+c\\a\alpha+b&b\alpha+c&0\end{vmatrix}=0$
Operating $C_3\rightarrow C_3-C_1\alpha-C_2$
We get,
$\begin{vmatrix}a &b&0\\b&c&0\\a\alpha+b&b\alpha+c&-(a\alpha^2+b\alpha+b\alpha+c)\end{vmatrix}=0$
$(ac-b^2)(a\alpha^2+2b\alpha+c)=0$
$\Rightarrow (ac-b^2)=0$ or $a\alpha^2+2b\alpha+c=0$
$\Rightarrow a,b,c$ are in G.P
Hence (b) is the correct answer.
answered Nov 20, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...