Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
0 votes

If $\overrightarrow a\:\:and\:\:\overrightarrow b$ are unit non collinear vectors and if $\overrightarrow u=\overrightarrow a-(\overrightarrow a.\overrightarrow b)\overrightarrow b$ and $\overrightarrow v=\overrightarrow a\times\overrightarrow b$ then $ |\overrightarrow v|= ?$

$\begin{array}{1 1} |\overrightarrow u| \\|\overrightarrow u|+|\overrightarrow u.\overrightarrow a| \\ |\overrightarrow u|+|\overrightarrow u\times\overrightarrow b| \\ |\overrightarrow u|+\overrightarrow u.(\overrightarrow a+\overrightarrow b) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\overrightarrow a\times (\overrightarrow b\times\overrightarrow c)=(\overrightarrow a.\overrightarrow c) \overrightarrow b-(\overrightarrow a.\overrightarrow b)\overrightarrow c$
Given: $|\overrightarrow a|=|\overrightarrow b|=1$
Also given that $\overrightarrow u=\overrightarrow a-(\overrightarrow a.\overrightarrow b)\overrightarrow b$
$\Rightarrow\: \overrightarrow u=(\overrightarrow b.\overrightarrow b)\overrightarrow a-(\overrightarrow a.\overrightarrow b)\overrightarrow b$ (Since $|\overrightarrow b|=1)$
$\Rightarrow\:\overrightarrow u=\overrightarrow b\times(\overrightarrow a\times\overrightarrow b)$
$\Rightarrow\:\overrightarrow u=\overrightarrow b\times \overrightarrow v$ (Since it is given that $\overrightarrow v=\overrightarrow a\times\overrightarrow b$)
$\Rightarrow\:|\overrightarrow u|=|\overrightarrow b||\overrightarrow v|sin\large\frac{\pi}{2}$
(Since $\overrightarrow v=\overrightarrow a\times\overrightarrow b\:\:is\:\:\perp\:\:to\:\:\overrightarrow b$)
$\Rightarrow\:|\overrightarrow u|=|\overrightarrow v|$ (Since $ |\overrightarrow b|=1$)
answered Nov 20, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App