logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

Let $M$ and $N$ be two $3\times 3$ non singular skew-symmetric matrices such that $MN=NM$.If PT denotes the transpose of P,then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to

$(a)\;M^2\qquad(b)\;-N^2\qquad(c)\;-M^2\qquad(d)\;MN$

Can you answer this question?
 
 

1 Answer

0 votes
As a skew symmetric matrix of order 3 cannot be non singular,therefore the data given in the question is inconsistent.
We have
$M^2N^2(MTN)^{-1}(MN^{-1})^T=M^2N^2N^{-1}(MT)^{-1}(N^{-1})^TM^T$
$\Rightarrow M^2N(M^T)^{-1}(N^{-1})^TM^T=-M^2NM^{-1}N^{-1}M$
$M^T=-M,N^T=-N)$ and $(N^{-1})^T=(NT)^{-1}$
$MN=NM$
$\Rightarrow -M(NM)(NM)^{-1}M$
$\Rightarrow -MM$
$\Rightarrow -M^2$
Hence (c) is the correct answer.
answered Nov 21, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...