Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

Let $M$ and $N$ be two $3\times 3$ non singular skew-symmetric matrices such that $MN=NM$.If PT denotes the transpose of P,then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to


Can you answer this question?

1 Answer

0 votes
As a skew symmetric matrix of order 3 cannot be non singular,therefore the data given in the question is inconsistent.
We have
$\Rightarrow M^2N(M^T)^{-1}(N^{-1})^TM^T=-M^2NM^{-1}N^{-1}M$
$M^T=-M,N^T=-N)$ and $(N^{-1})^T=(NT)^{-1}$
$\Rightarrow -M(NM)(NM)^{-1}M$
$\Rightarrow -MM$
$\Rightarrow -M^2$
Hence (c) is the correct answer.
answered Nov 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App