logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Matrices

If $A=\begin{bmatrix}a&b\\b&a\end{bmatrix}$ and $A^2=\begin{bmatrix}\alpha&\beta\\\beta&\alpha\end{bmatrix}$ then

$\begin{array}{1 1}(a)\;\alpha=2ab,\beta=a^2+b^2\\(b)\;\alpha=a^2+b^2,\beta=ab\\(c)\;\alpha=a^2+b^2,\beta=2ab\\(d)\;\alpha=a^2+b^2,\beta=a^2-b^2\end{array}$

1 Answer

Given :
$A^2=\begin{bmatrix}\alpha&\beta\\\beta&\alpha\end{bmatrix}$
$A=\begin{bmatrix}a&b\\b&a\end{bmatrix}$
$A^2=\begin{bmatrix}a&b\\b&a\end{bmatrix}\begin{bmatrix}a &b\\b&a\end{bmatrix}$
$\Rightarrow \begin{bmatrix}a^2+b^2&2ab\\2ab&a^2+b^2\end{bmatrix}$
$\Rightarrow \alpha=a^2+b^2,\beta=2ab$
Hence (c) is the correct answer.
answered Nov 21, 2013 by sreemathi.v
 

Related questions

...