logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

Inverse of $\begin{bmatrix}1&2&3\\2&3&4\\3&4&6\end{bmatrix}$ is

$\begin{array}{1 1}(a)\;\begin{bmatrix}-2&0&1\\0&3&2\\1&-2&1\end{bmatrix}&(b)\;\begin{bmatrix}2 &0&-1\\0&-3&2\\-1&2&-1\end{bmatrix}\\(c)\;\begin{bmatrix}1&2&3\\2&3&4\\3&4&6\end{bmatrix}&(d)\;None\;of\;these\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Let $A=\begin{bmatrix}1&2&3\\2&3&4\\3&4&6\end{bmatrix}$
Then $adj A=\begin{bmatrix}2 &0&-1\\0&-3&2\\-1&2&-1\end{bmatrix}$
Also $\mid A\mid =\begin{vmatrix}1&2&3\\2&3&4\\3&4&6\end{vmatrix}$
$\Rightarrow 1(2)-2(0)+3(-1)$
$\Rightarrow -1$
$A^{-1}=\large\frac{adj\;A}{\mid A\mid}$
$\qquad=\begin{bmatrix}-2&0&1\\0&3&2\\1&-2&1\end{bmatrix}$
Hence (a) is the correct answer.
answered Nov 21, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...