Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

Let $a,b,c$ be the real numbers. Then the following system of equations in $x,y$ and $z$: $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$, $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, $\large\frac{-x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ has

$\begin{array}{1 1}(a)\;No \;solution&(b)\;unique\;solution\\(c)\;infinitely\;many\;solutions&(d)\;finitely\;many\;solutions\end{array}$

Can you answer this question?

1 Answer

0 votes
Let $\large\frac{x^2}{a^2}=$$X$
Then the given system of equations becomes
This is the new system of equations.
For New system we have,
$\;\;\;=-4\neq 0$
New system of equations has unique solution.
$D_1=\begin{vmatrix}1 &1&-1\\1&-1&1\\1&1&1\end{vmatrix}$
$D_2=\begin{vmatrix}1 &1&-1\\1&-1&1\\1&1&1\end{vmatrix}$
$D_3=\begin{vmatrix}1 &1&-1\\1&-1&1\\1&1&1\end{vmatrix}$
Now $X=\large\frac{D_1}{D}=\frac{-4}{-4}=$$1$
$\Rightarrow x=\pm a,y=\pm b,z=\pm c$
Hence (b) is the correct answer.
answered Nov 21, 2013 by sreemathi.v
edited Mar 19, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App