Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

The parameter on which the value of the determinant $\begin{vmatrix}1&x&x+1\\\cos(p-d)x&\cos px&\cos(p+d)x\\\sin(p-d)x&\sin px&\sin(P+d)x\end{vmatrix}$ does not defined upon is


Can you answer this question?

1 Answer

0 votes
Let $A=\begin{vmatrix}1 &a&a^2\\\cos(p-d)x&\cos px&\cos(p+d)x\\\sin(p-d)x&\sin px&\sin(p+d)x\end{vmatrix}$
Apply $C_1\rightarrow C_1+C_3$
$\Delta=\begin{vmatrix}1+\alpha^2&a&a^2\\\cos(p-d)x&\cos px&\cos(p+d)x\\\sin(p-d)x&\sin px&\sin(p+d)x\end{vmatrix}$
$\Rightarrow \Delta=\begin{vmatrix}1+a^2&a&a^2\\2\cos px\cos dx&\cos px&\cos (p+d)x\\2\sin px\cos dx&\sin px&\sin(p+d)x\end{vmatrix}$
$C_1\rightarrow C_1-(2\cos dx)C_2$
$\Delta =\begin{vmatrix}1+a^2-2a\cos dx&a&a^2\\0&\cos px&\cos(p+d)x\\0&\sin px&\sin(p+d)x\end{vmatrix}$
Expanding along $C_1$ we get,
$\Delta=(1+a^2-2a\cos dx)[\sin (p+d)x\cos px-\sin px\cos(p+d)x]$
$\Rightarrow \Delta=(1+a^2-2a\cos dx)[\sin \{(p+d)x-px\}]$
$\Rightarrow \Delta=(1+a^2-2a\cos dx)[\sin dx]$
Which is independent of p.
Hence (b) is the correct answer.
answered Nov 22, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App