Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

$A=\begin{bmatrix}1&0&0\\0&1&1\\0&-2&4\end{bmatrix}$ and $I=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$ and $A^{-1}=[\large\frac{1}{6}$$(A^2+cA+dI)]$ then the value of $c$ and $d$ are


Can you answer this question?

1 Answer

0 votes
We have $A=\begin{bmatrix}1 &0&0\\0&1&1\\0&-2&4\end{bmatrix}$
$I=\begin{bmatrix}1&0&0\\0 &1&0\\0&0&1\end{bmatrix}$
Multiply A on both the side of the equation
$\Rightarrow 6AA^{-1}=A^3+cA^2+dAI$
$\Rightarrow A^3+cA^2+dA-6I=0$
We find that $A^2=\begin{bmatrix}1 &0&0\\0&-1&5\\0&-10&14\end{bmatrix}$
We find that $A^3=\begin{bmatrix}1 &0&0\\0&-11&19\\0&-38&46\end{bmatrix}$
$\therefore A^3+cA^2+dA-6I=0$
$\Rightarrow \begin{bmatrix}1 &0&0\\0 &-11&19\\0 &-38&46\end{bmatrix}+c\begin{bmatrix}1&0&0\\0&-1&5\\0&-10&14\end{bmatrix}+d\begin{bmatrix}1&0&0\\0&1&1\\0&-2&4\end{bmatrix}-6\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=0$
$\Rightarrow \begin{bmatrix}1+c+d-6&0&0\\0&-11-c+d-6&19+5c+d\\0&-38-10c-2d&46+14c+4d-6\end{bmatrix}$
$\Rightarrow \begin{bmatrix}0 &0&0\\0&0&0\\0&0&0\end{bmatrix}$
$\Rightarrow 1+c+d-6=0$
$\Rightarrow c+d=5$
On solving we get $c=-6,d=11$
Hence (c) is the correct answer.
answered Nov 22, 2013 by sreemathi.v
edited Mar 19, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App