Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

If $a_1,a_2,a_3.....a_n$ are in G.P then the determinant $\Delta=\begin{vmatrix}\log a_n&\log a_{n+1}& \log a_{n+2}\\\log a_{n+3}&\log a_{n+4}&\log a_{n+5}\\\log a_{n+6}&\log a_{n+7}&\log a_{n+8}\end{vmatrix}$ is equal to


Can you answer this question?

1 Answer

0 votes
$a_1,a_2,a_3$ are in G.P
$\therefore$ Using $a_n=ar^{n-1}$ we get the determinant as
$\begin{vmatrix}\log ar^{n-1}&\log ar^n&\log ar^{n+1}\\\log ar^{n+2}&\log ar^{n+3}&\log ar^{n+4}\\\log ar^{n+5}&\log ar^{n+6}&\log ar^{n+7}\end{vmatrix}$
Operating $C_3-C_2$ and $C_2-C_1$ and using $\log m-\log n=\log \large\frac{m}{n}$ we get,
$\Rightarrow \begin{vmatrix}\log ar^{n-1}&\log r&\log r\\\log ar^{n+2}&\log r&\log r\\\log a r^{n+5}&\log r&\log r\end{vmatrix}$
$\Rightarrow 0$
When two columns are identical.
Hence (b) is the correct answer.
answered Nov 22, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App