Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

If the matrix $A=\begin{bmatrix}y+a&b&c\\a&y+b&c\\a&b&y+c\end{bmatrix}$ has rank 3 then

$\begin{array}{1 1}(a)\;y\neq (a+b+c)&(b)\;y\neq 1\\(c)\;y=0&(d)\;y\neq -(a+b+c)\;and\;y\neq 0\end{array}$

Can you answer this question?

1 Answer

0 votes
Here the rank of A is 3.
$\therefore$ minor of order 3 of $A\neq 0$
$\Rightarrow \begin{vmatrix}y+a&b&c\\a&y+b&c\\a&b&y+c\end{vmatrix}\neq 0$
Apply $C_1\rightarrow C_1+C_2+C_3$ and taking $(y+a+b+c)$ common from $C_1$
Apply $R_2\rightarrow R_2-R_1$
$R_3\rightarrow R_3-R_1$ we get
$\Rightarrow (y+a+b+c)\begin{vmatrix}1&b&c\\0&y&0\\0&0&y\end{vmatrix}\neq 0$
expanding along $C_1$ we get
$\Rightarrow (y+a+b+c)(y^2)\neq 0\rightarrow$
$\Rightarrow y\neq 0$ and $y\neq -(a+b+c)$
Hence (d) is the correct answer.
answered Nov 22, 2013 by sreemathi.v
edited Mar 19, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App