Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Determinants

Let $a,b,c$ be any real numbers. Suppose that there are real numbers $x,y,z$ not all zero. Such that $x=cy+bz,y=az+cx,z=bx+ay$. Then $a^2+b^2+2abc$ is equal to


1 Answer

Given equations are
$\Rightarrow \begin{vmatrix}1&-c&-b\\c&-1&a\\b&a&-1\end{vmatrix}$
$\Rightarrow 1(1-a^2)+c(-c-ab)-b(ac+b)=0$
$\Rightarrow 1-a^2-c^2-abc-b^2-abc=0$
$\Rightarrow a^2+b^2+c^2+2abc=1$
Hence (d) is the correct answer.
answered Nov 22, 2013 by sreemathi.v
edited Mar 19, 2014 by sharmaaparna1

Related questions