Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Determinants
0 votes

$l,m,n$ are the $p^{th},q^{th}$ and $r^{th}$ terms of a GP and all positive then $\begin{vmatrix}\log l&p&1\\\log m&q&1\\\log n&r&1\end{vmatrix}$ equals


Can you answer this question?

1 Answer

0 votes
Let $x$ and $y$ are first term and common ratio of GP respectively.
$\therefore l=xy^{p-1}$
Now $\begin{vmatrix}\log l&p&1\\\log m&q&1\\\log n&r&1\end{vmatrix}=\begin{vmatrix}\log l/m&p-q&0\\\log m/n&q-r&0\\\log n&r&1\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$
$\qquad R_2\rightarrow R_2-R_3$
$\Rightarrow \begin{vmatrix}(p-q)\log y&p-q&0\\(q-r)\log y&q-r&0\\\log n&r&1\end{vmatrix}$
$\Rightarrow (p-q)(q-r)\begin{vmatrix}\log y&1&0\\\log y&1&0\\\log n&r&1\end{vmatrix}$
$1^{st}$ and $2^{nd}$ row are identical.
$\Rightarrow 0$
Hence (d) is the correct option.
answered Nov 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App