logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Matrices

If $A=\begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}$ then $A^4$ is equal to

$(a)\;27A\qquad(b)\;81A\qquad(c)\;243A\qquad(d)\;729A$

1 Answer

Given :
$A=\begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}$
$A=3\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$
$A^2=3\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}3\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$
$\quad=9\begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}$
$A^4=A^2.A^2$
$\;\;\;\;\;=9A.9A$
$\;\;\;\;\;=81A^2$
$\;\;\;\;=81.9A$
$\;\;\;\;=729A$
Hence (d) is the correct answer.
answered Nov 25, 2013 by sreemathi.v
 

Related questions

...