logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

Matrix $A$ satisfies $A^2=2A-I$ where $I$ is the identity matrix then for $n^32A^n$ is equal to $(n\in N)$

$\begin{array}{1 1}(a)\;nA-I&(b)\;2^{n-1}A-(n-1)I\\(c)\;nA-(n-1)I&(d)\;2^{n-1}A-I\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
$A^2=2A-I$
$A^3=2A^2-IA$
$\;\;\;\;=2(2A-I)-A$
$A^3=3A-2I$
$A^4=4A-3I$
$A^5=5A-4I$
$A^n=nA-(n-1)I$
Hence (c) is the correct answer.
answered Nov 25, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...