logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If the moment of inertia of a disc about an axis tangential and parallel to the surface is I.Then find the moment of inertia about the axis tangential but perpendicular to the surface in terms of the I?

\[\begin {array} {1 1} (a)\;\frac{6}{5}\;I & \quad (b)\;\frac{3}{4}\;I \\ (c)\;\frac{3}{2}\;I & \quad  (d)\;\frac{5}{4}\;I \end {array}\]
Can you answer this question?
 
 

1 Answer

0 votes
Parallel axis theorem:
$I= \large\frac{MR^2}{4}$$-MR^2$
$\quad= \large\frac{5}{4}$$MR^2$
$I= \large\frac{MR^2}{2}$$+MR^2$
$\quad= \large\frac{3}{2}$$MR^2$
$I'= \large\frac{5}{4} \times \frac{4}{5} \bigg(\frac{3}{2}\bigg)$$MR^2$
$\qquad= \large\frac{6}{5}$$I$
answered Nov 26, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...