Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Matrices
0 votes

If a point $(x,y)$ moves on a curve and satisfies the equation $\small\begin{vmatrix}a&b&ax+by\\b&c&bx+cy\\ax+by&bx+ay&0\end{vmatrix}=0$ then

$\begin{array}{1 1}(a)\;a,b,c\;form\;an\;AP\\(b)\;a,b,c\;form\;an\;HP\\(c)\;The\;point(x,y)\;lies \;on\;a\;curve\\(d)\;None\;of\;the\;above\end{array}$

Can you answer this question?

1 Answer

0 votes
Apply $C_3\rightarrow C_3-xC_1-yC_2$
$\Rightarrow (b^2-ac)(ax^2+2bxy+ay^2)=0$
either $b^2=ac$
(or) $ax^2+2bxy+ay^2=0$
$\Rightarrow $The point $x,y$ lies on a curve through the origin.
Hence (c) is the right option
answered Nov 26, 2013 by sreemathi.v
edited Mar 20, 2014 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App