Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Moment of inertia of a portion of a disc about an axis perpendicular to its plane; Mass of the object is M and radius R is

\[\begin {array} {1 1} (a)\;\frac{MR^2}{2} & \quad (b)\;\frac{1}{6}\frac{MR^2}{2} \\ (c)\;6.\frac{MR^2}{2} & \quad  (d)\;none\;of\;the \;above \end {array}\]

Can you answer this question?

1 Answer

0 votes
Let I be moment of inertia of point.
This is a symmetric part of larger dise.
$\therefore 6I= \large\frac{(6M)R^2}{2}$
$\therefore I= \large\frac{MR^2}{2}$
If an object is a symmetric part of a larger object, then its moment of inertia will have the same form as the large object.
answered Nov 26, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App