Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

From a disc of mass M and radius R, a smaller disc of radius $\large\frac{R}{2}$ is cut out as shown. The moment of inertia of the remaining portion about an axis through the centre 0 and perpendicular to the plane of the disc is

\[\begin {array} {1 1} (a)\;\frac{17MR^2}{32} & \quad (b)\;\frac{13MR^2}{32} \\ (c)\;\frac{11}{32}MR^2 & \quad  (d)\;\frac{MR^2}{2} \end {array}\]

Can you answer this question?

1 Answer

0 votes
Moment of inertia of the cut disc portion about $0=I_1$
Moment of inertia of remaining portion about $0=I_2$
$M.I$ of the full disc about $O=I$
Mass of out disc $=\large\frac{M}{R^2}. \bigg(\large\frac{R}{2}\bigg)^2$
$\qquad= \large\frac{M}{4}$
$I_1$ about $O^{1}=\large\frac{1}{2} \bigg( \large\frac{M}{4} \bigg) \bigg( \frac{R}{2} \bigg)^2$
$\qquad = \large\frac{MR^2}{32}$
$I_1$ about $O=\large\frac{MR^2}{32}+\frac{M}{4} \bigg( \frac{R}{4} \bigg)$
$\qquad= \large\frac{MR^2}{32}+\frac{MR^2}{16}$
$\qquad= \large\frac{3 MR^2}{32}$
$I_2= I-I_1$
$\qquad= \large\frac{MR^2}{2} -\frac{3MR^2}{32}$
$\qquad= \large\frac{13 MR^2}{32}$
answered Nov 26, 2013 by meena.p
edited Jun 19, 2014 by lmohan717

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App