\[\begin {array} {1 1} (a)\;\frac{Mmg}{M+m} & \quad (b)\;\frac{Mmg}{M+2m} \\ (c)\;\frac{Mmg}{M+3m} & \quad (d)\;\frac{Mmg}{M+4m} \end {array}\]

$mg-T=ma$. for each man.

$2TR= I \alpha$

$\qquad= \large\frac{MR^2}{2}. \alpha$

$T= \large\frac{MR \alpha}{4}$

Since string does not stop,

$a= R \alpha$

$\therefore mg= ma +\large\frac{Ma}{4}$

$\therefore a= \large\frac{4\;mg}{4m+M}$

$T= \large\frac{M}{4} \frac{4mg}{4m+M}$

$T= \large\frac{Mmg}{(M+4m)}$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...