Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A particle of mass 2 kg is moving along a straight line $3x+4y=5$ with speed $8 m/s$. What is the angular momentum of the particle about the orgin.

\[\begin {array} {1 1} (a)\;8\;kg\;m^2/s & \quad (b)\;16\;kg\;m^2/s \\ (c)\;20\;kg\;m^2/s & \quad  (d)\;24\;kg\;m^2/s \end {array}\]
Can you answer this question?

1 Answer

0 votes
$4 y= -3x+5$
$y= -\large\frac{3}{4}x +\frac{5}{4}$
Slope $= -\large\frac{3}{4}$
$\qquad =\tan \theta$
Angular momentum about the origin
$L= mvd$
$[p \times perpendicular \;distance]$
$\qquad= 2 \times 8 \times d$
$\qquad= 16 \;d$
$Y=0, x= \large\frac{5}{3}$
In $OCB$,
$\sin \theta=\large\frac{OC}{OB}$
$\qquad= \large\frac{d}{OB}$
From $\Delta OAB, \tan \theta=\large\frac{5/4}{5/3}$
$\qquad= \large\frac{3}{4}$
=> $\sin \theta= \large\frac{3}{5}$
$\therefore \large\frac{3}{5}=\large\frac{d}{5/3}$
$d= 1 m$
$\therefore L=16 \;kg\;m^2/s$
answered Nov 28, 2013 by meena.p
edited Jun 21, 2014 by lmohan717

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App