Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If a spherical ball rolls with out slipping, the fraction of its total energy associated with rotation is

\[\begin {array} {1 1} (a)\;\frac{3}{5} & \quad (b)\;\frac{2}{7} \\ (c)\;\frac{2}{5} & \quad  (d)\;\frac{3}{7} \end {array}\]
Can you answer this question?

1 Answer

0 votes
The moment of inertia of a sphere about its central axis and a solid spherical shell of mass M and radius R as shown in the figure above is $I_{\text{sphere}} = \large\frac{2}{5}$$MR^2$
Kinetic energy of the rotation of the sphere KE$_{\text{rotation}} = \large\frac{1}{2} $$I\omega^2 $ where $\omega $ is the angular velocity.
$\Rightarrow$ KE$_{\text{rotation}} = \large\frac{1}{2} $$I\omega^2 = \large\frac{1}{2} \frac{2}{5}$$ MR^2 \omega^2$
Now, angular velocity $\omega = \large\frac{v}{R}$, where $v$ is the linear velocity of the sphere.
$\Rightarrow$ KE$_{\text{rotation}} = \large\frac{1}{2} $$I\omega^2 = \large\frac{1}{2} \frac{2}{5}$$ MR^2 $$\large\frac{v^2}{R^2}$$ = \large\frac{1}{5} $$Mv^2$
Kinetic energy of the linear motion KE$_{\text{linear motion}} = \large\frac{1}{2}$$Mv^2$
Total Kinetic energy $=$ KE$_{\text{rotation}} + $KE$_{\text{linear motion}} = \large\frac{1}{5}$$Mv^2 + \large\frac{1}{2}$$ Mv^2$$ = \large\frac{7}{10} $$Mv^2$
Now, the fraction of its total energy associated with rotation $= \large\frac {\text{KE of Rotation}}{\text{Total KE}}$$ = \Large\frac{ \large\frac{1}{5} \normalsize Mv^2}{\large\frac{7}{10} \normalsize Mv^2}$
$\qquad = \large\frac{2}{7}$
answered Nov 29, 2013 by meena.p
edited Mar 25, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App