Chat with tutor

Ask Questions, Get Answers

Questions  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Vector Algebra

If vector $\overrightarrow a$ is unit vector and it makes angle $\large\frac{\pi}{4}$ with $\hat k$ and $\overrightarrow a+\hat i+\hat j$ is also a unit vector, then $\overrightarrow a=?$

$\begin{array}{1 1} (A) \large\frac{1}{2}\hat i+\large\frac{1}{2}+\hat j+\large\frac{1}{\sqrt 2}\hat k \\ (B) -\large\frac{1}{2}\hat i+\large\frac{1}{2}+\hat j+\large\frac{1}{\sqrt 2}\hat k\\ (C) -\large\frac{1}{2}\hat i-\large\frac{1}{2}+\hat j+\large\frac{1}{\sqrt 2}\hat k\\ (D) \large\frac{1}{2}\hat i-\large\frac{1}{2}+\hat j+\large\frac{1}{\sqrt 2}\hat k \end{array} $

1 Answer

Let $\overrightarrow a=\alpha \hat i+\beta \hat j+\gamma \hat k$
Given: $|\overrightarrow a|=1\Rightarrow\:\alpha ^2+\beta^2+\gamma^2=1.......(i)$
Given: $\overrightarrow a.\hat k=cos\large\frac{\pi}{4}=\frac{1}{\sqrt 2}$
$\Rightarrow\:\gamma=\large\frac{1}{\sqrt 2}$
Also it is given that $\overrightarrow a+\hat i+\hat j$ is a unit vector.
From $(ii)\:\:and \:\:(iii) $ we get $\alpha+\beta=-1....(iv)$
Solving (ii) and (iv) we get $\alpha=\beta=-\large\frac{1}{2}$
$\therefore\:\overrightarrow a=-\large\frac{1}{2}$$\hat i-\large\frac{1}{2}$$+\hat j+\large\frac{1}{\sqrt 2}$$\hat k$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.