Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Find the value of $\alpha$ if $A=\begin{bmatrix}\cos\alpha & \sin\alpha\\-\sin\alpha & \cos\alpha\end{bmatrix}$ and $\;A^{-1}=A'$

Can you answer this question?

1 Answer

0 votes
  • If A_{i,j} be a matrix m*n matrix , then the matrix obtained by interchanging the rows and column of A is called as transpose of A.
  • If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B: $\begin{bmatrix}AB\end{bmatrix}_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + A_{i,3}B_{3,j} ... A_{i,n}B_{n,j}$
Given $A^{-1}=A'$
$A^1=\begin{bmatrix}cos\alpha & -sin\alpha\\sin\alpha & cos\alpha\end{bmatrix}$
Let $A'$ be a matrix.
Hence $A.A^T=\begin{bmatrix}cos\alpha & sin\alpha\\-sin\alpha & cos\alpha\end{bmatrix}\begin{bmatrix}cos\alpha & -sin\alpha\\sin\alpha & cos\alpha\end{bmatrix}$
$\;\;\;\;\;\;\qquad\;\;=\begin{bmatrix}cos^2\alpha+sin^2\alpha & -cos\alpha sin\alpha+cos\alpha sin\alpha\\-sin\alpha cos\alpha+cos\alpha sin\alpha & sin^2\alpha+cos^2\alpha\end{bmatrix}$
$\Rightarrow \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$
Hence we get
$\Rightarrow A^{-1}$ exists.
Hence it is true for all real value of $\alpha$
answered Jul 17, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App