Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Figure shows a rough track, a portion of which is in the form of a cylinder of radius R. with what minimum linear speed should a sphere of radius r be set rolling on the horizontal part so that it completes goes round the circle on the cylindrical part?



\[\begin {array} {1 1} (a)\;\sqrt {\frac{27}{7}(R-r)} & \quad (b)\;\sqrt{\frac{27}{5}g(R-r)} \\ (c)\;\sqrt {\frac{7}{5}g(R+r)} & \quad  (d)\;\sqrt {\frac{17}{5}g(R-r} \end {array}\]
Can you answer this question?

1 Answer

0 votes
At the point $P, N=0$
$mg= \large\frac{mv^2p}{(R-v)}$
$V^2_p =(R-r) g$
$\large\frac{1}{2}$$mV_A^2 \bigg[1+ \large\frac{k^2}{R^2}\bigg]=\large\frac{1}{2} $$mV_p^2+mg2( R-r)$
$\qquad= \large\frac{1} {2}$$ m \bigg[1+\large\frac{k^2}{R^2}\bigg]$$V_p^2+2 mg (R-r)$
$\qquad= \large\frac{1}{2}$$m \bigg[1+\large\frac{2}{5}\bigg]$$ V_p^2+2mg (R-r)$
$\qquad= \large\frac{7}{10} $$m (R-r)g+2mg(R-v)$
$\frac{-1}{2}mV_A^2 \bigg[\frac{7}{5}\bigg]= \large\frac{27}{10}$$ m(R-r)g$
$V_A= \sqrt {\large\frac{27}{7} \normalsize (R-r)g}$
answered Dec 5, 2013 by meena.p
edited Jun 24, 2014 by lmohan717

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App