logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Integral Calculus

Integrate: $\int \limits _0^{3 \pi} \large\frac{|\sin x|}{\sin x}$$dx$

\[\begin {array} {1 1} (a)\;\pi \\ (b)\;\frac{\pi}{2} \\ (c)\;\frac{3 \pi}{2} \\ (d)\;2 \pi \end {array}\]

1 Answer

$\int \limits_0^{\pi} \bigg(\large\frac{\sin x}{\sin x} \bigg)+\int \limits_{\pi}^{2 \pi}- \bigg (\large\frac{\sin x}{\sin x}\bigg)+\int \limits _{2z}^{3x} \large\frac{\sin x }{\sin x}$$dx$
=>$\large [x]_0^{\pi} dx - [x]_{\pi}^{2\pi}+[x]_{2\pi} ^{3 \pi}$
=> $ \pi-0 -2 \pi +\pi +3 \pi-2 \pi$
$=\pi$
Hence a is the correct answer.
answered Dec 12, 2013 by meena.p
edited Mar 20, 2014 by balaji.thirumalai
 
...