logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \limits_0^{\large\frac{\pi}{4}} $$\log |1+ \tan x| dx$

\[\begin {array} {1 1} (a)\;\frac{\pi}{4} \log 2 \\ (b)\;\frac{\pi}{\theta} \log 6 \\ (c)\;\frac{\pi}{8} \log 2 \\ (d)\;none \end {array}\]
Can you answer this question?
 
 

1 Answer

0 votes
$f(x)= f(\large\frac{\pi}{4}$$-x)$
By using property
$=> f( \large\frac{\pi}{4} -x)= \int\limits_0^{\frac{\pi}{4}}$$ \log |1+ tan (z/4-x)|dx$
$=> f( \large\frac{\pi}{4} -x)= \int\limits_0^{\frac{\pi}{4}}$$ \log \large\frac{\{1+\tan x +1- \tan x\}}{1+\tan x}$$dx$
$ f( \large\frac{\pi}{4} -x)= \int\limits_0^{\frac{\pi}{4}}$$ \log |2| -\int \limits_0^{\large\frac{\pi}{4}} \log 2 dx$
$2f(x) =\log 2 [\large\frac{\pi}{4}$$-0]$
$f(x) =\large\frac{\pi}{8}$$ \log 2$
Hence c is the correct answer.
answered Dec 13, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...