logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate: $\int \limits_{_z}^{z} \large\frac{2x(1+\sin x)}{1+\cos ^2 x}$$dx$

\[\begin {array} {1 1} (a)\;z^2 \\ (b)\;z^3 \\ (c)\;2z \\ (d)\;\frac{z^2}{4} \end {array}\]
Can you answer this question?
 
 

1 Answer

0 votes
$\int \limits_{_z}^{z} \large\frac{2x}{1+\cos ^2 x}+ \int \limits_{_z}^{z} \large\frac{2x \sin x)}{1+\cos ^2 x}$$dx$
By applying the property
$\int \limits_{-a} ^a f(x)dx=> 2 \int _0^a f(x). f(x) =f(-x)$
=>$ 0$$\qquad f(x) =-f(-x)$
$=0+ 2 \int \limits_0^z \large\frac{2x \sin x}{1+\cos ^2 x} dx$
By solving this
$\qquad=4 \times \large\frac{z^2}{4}$
$\qquad=z^2$
Hence a is the correct answer
answered Dec 13, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...