logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Find $\int \limits_2^{-1} f(x) dx\;$, given $\;\int \limits_{-1}^4 f(x) dx =4$ and$\;\int \limits_2^4 [3-f(x) ] dx=7$

\[\begin {array} {1 1} (a)\;2 \\ (b)\;-4 \\ (c)\;-5 \\ (d)\;4 \end {array}\]

Can you answer this question?
 
 

1 Answer

0 votes
$\int \limits_2 ^ 4 3 dx- \int \limits _2^4 f(x) dx =7$
$3(2) - \int \limits _{2}^{-1} f(x) dx - \int \limits_{-1}^4 f(x) dx =7$
$6- \int \limits _2 ^{-1} f(x)dx -\int \limits _{-1}^{4} f(x) dx =7$
$6- \int \limits _2 ^{-1} f(x)dx -4=7$
$ \int \limits _2 ^{-1} f(x)dx =-5$
Hence c is the correct answer.
answered Dec 13, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...