Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate $I= \int \limits_0^1 e^{x^2} dx$

\[\begin {array} {1 1} (a)\;I \in (0,1) \\ (b)\;I \in (e, \infty) \\ (c)\;I \in (1,e) \\ (d)\;I \in (1,\infty) \end {array}\]

Can you answer this question?

1 Answer

0 votes
To solve this type of one, which Integration is not possible, find $max ^m, min ^m$ value of its $f/n$ :
$\int \limits_a^b f(x) => m- min, M-max$
$m^c (b-a) < \int \limits_a^b f (x) dx < M [b-a]$
for its $ minz =1$
$max ^n=e$
$1. (1-0) < \int \limits _0^1 e^{x^2}.dx < e[1-0]$
$\int \limits _0^1 e^{x^2}.dx \in (1,e)$
Hence c is the correct answer.
answered Dec 16, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App