logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
0 votes

If $\overrightarrow a,\:\overrightarrow b$ are two non zero and non collinear vectors, then $[\overrightarrow a\:\overrightarrow b\:\hat i]\hat i+[\overrightarrow a\:\overrightarrow b\:\hat j]\hat j+[\overrightarrow a\:\overrightarrow b\:\hat k]\hat k=?$

$\begin{array}{1 1} \overrightarrow a+\overrightarrow b \\ \overrightarrow a\times\overrightarrow b \\ \overrightarrow a-\overrightarrow b \\ \overrightarrow b\times\overrightarrow a\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\overrightarrow r.\hat i+\overrightarrow r.\hat j+\overrightarrow r.\hat k=\overrightarrow r$
$[\overrightarrow a\:\overrightarrow b\:\hat i]=(\overrightarrow a\times\overrightarrow b).\hat i$
$[\overrightarrow a\:\overrightarrow b\:\hat j]=(\overrightarrow a\times\overrightarrow b).\hat j$ and similarly $[\overrightarrow a\:\overrightarrow b\:\hat k]=(\overrightarrow a\times\overrightarrow b).\hat k$
$\therefore\:[\overrightarrow a\:\overrightarrow b\:\hat i]\hat i+[\overrightarrow a\:\overrightarrow b\:\hat j]\hat j+[\overrightarrow a\:\overrightarrow b\:\hat k]\hat k=(\overrightarrow a\times\overrightarrow b)$
answered Dec 17, 2013 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...