Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using the properties of determinants, Prove that$\begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{vmatrix}\;=\;4xyz$

Can you answer this question?

1 Answer

0 votes
  • If each element of a row (or a column)of a determinant is multiplied by a constant k,then |A|=k|A|.
  • If A is a square matrix such that each element of a row (or a column) of A is expressed as a sum of two or more terms,then the determinant of A can be expressed as the sum of the determinants of two or more matrices of the same order.
Let $\Delta=\begin{vmatrix}y+z & z & y\\z & z+x & x\\y & x & x+y\end{vmatrix}$
Apply $R_1\rightarrow R_1+R_2+R_3$
$\Delta=\begin{vmatrix}2y+2z & 2x+2z & 2y+2x\\z & z+x & x\\y & x & x+y\end{vmatrix}$
Taking 2 as the common factor from $R_1$,
$\Delta=2\begin{vmatrix}y+z & x+z & y+x\\z & z+x & x\\y & x & x+y\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
$\Delta=2\begin{vmatrix}y & 0 & y\\z-y & z & -y\\y & x & x+y\end{vmatrix}$
Apply $C_1\rightarrow C_1-C_3$
$\Delta=2\begin{vmatrix}0 & 0& y\\z & z & -y\\-x & x & x+y\end{vmatrix}$
Expanding along $R_1$ we get,
Therefore $\Delta=2\times 2xyz.$
Hence proved.


answered Mar 15, 2013 by sreemathi.v
edited Mar 15, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App