logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using the properties of determinants, Prove that$\begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{vmatrix}\;=\;4xyz$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If each element of a row (or a column)of a determinant is multiplied by a constant k,then |A|=k|A|.
  • If A is a square matrix such that each element of a row (or a column) of A is expressed as a sum of two or more terms,then the determinant of A can be expressed as the sum of the determinants of two or more matrices of the same order.
Let $\Delta=\begin{vmatrix}y+z & z & y\\z & z+x & x\\y & x & x+y\end{vmatrix}$
 
Apply $R_1\rightarrow R_1+R_2+R_3$
 
$\Delta=\begin{vmatrix}2y+2z & 2x+2z & 2y+2x\\z & z+x & x\\y & x & x+y\end{vmatrix}$
 
Taking 2 as the common factor from $R_1$,
 
$\Delta=2\begin{vmatrix}y+z & x+z & y+x\\z & z+x & x\\y & x & x+y\end{vmatrix}$
 
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
 
$\Delta=2\begin{vmatrix}y & 0 & y\\z-y & z & -y\\y & x & x+y\end{vmatrix}$
 
Apply $C_1\rightarrow C_1-C_3$
 
$\Delta=2\begin{vmatrix}0 & 0& y\\z & z & -y\\-x & x & x+y\end{vmatrix}$
 
Expanding along $R_1$ we get,
 
$\Delta=2[0-0+y(xz+xz)]$
 
Therefore $\Delta=2\times 2xyz.$
 
$\Delta=4xyz.$
 
Hence proved.

 

answered Mar 15, 2013 by sreemathi.v
edited Mar 15, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...