Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Show that the point(a+5,a-4),(a-2,a+3) and (a,a) do not lie on a straight line for any value of a.

Can you answer this question?

1 Answer

0 votes
  • If the area of a triangle is 0,then the three points are collinear.
  • The area of triangle $\Delta=\frac{1}{2}\begin{vmatrix}x_1 & y_1 & 1\\x_2 & y_2 & 1\\x_3 & y_3 & 1\end{vmatrix}$
Let the points ($x_1,y_1),(x_2,y_2)$ and $(x_3,y_3)$ be (a+5,a-4),(a-2,a+3),(a,a).
We are asked to prove that the points are not collinear.
For this it is enough to prove that
$\Delta=\begin{vmatrix}x_1 & y_1 & 1\\x_2 & y_2 & 1\\x_3 &y_3 &1\end{vmatrix}\neq 0.$
Let $\Delta=\begin{vmatrix}a+5 & a-4 & 1\\a-2 & a+3 & 1\\a & a & 1\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
$\Delta=\begin{vmatrix}7 & -7 & 0\\-2 & 3 & 0\\a & a & 1\end{vmatrix}$
Now expanding along $R_1$ we get,
$\quad=21-14\neq 0.$
Hence the points are not collinear.
answered Mar 19, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App