logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

Integrate : $\int \large\frac{x^5+1}{x^2+1}$$dx$

\[\begin {array} {1 1} (a)\;\frac{x^4}{4}-\frac{x^2}{2}+\frac{1}{2} \log (x^2+1)+\tan ^{-1} (x^2+1) +c \\ (b)\;\frac{x^4}{4}+\frac{x^2}{2}+\frac{1}{2} \log (x^2+1)+\tan ^{-1} (x^2-1) +c \\ (c)\;x^2+x+c \\ (d)\;None \end {array}\]
Can you answer this question?
 
 

1 Answer

0 votes
$\int \bigg(x^3-x+\large\frac{x+1}{x^2+1}\bigg)$$dx$
$\int (x^3-x) dx +\int \large\frac{x+1}{x^3+1}$$dx$
$x^2 +1 =t$
$2xdx =dt$
$\int (x^3-x) dx +\int \large\frac{dt}{2(t)}+\int \large\frac{1}{x^2+1}$$dx$
=>$ \large\frac{x^4}{4}-\frac{x^2}{2}+\frac{1}{2}$$ \log (t)+\tan ^{-1}(x)+c$
=>$ \large\frac{x^4}{4}-\frac{x^2}{2}+\frac{1}{2}$$ \log (x^2+1)+\tan ^{-1} (x^2+1) +c$
Hence a is the correct answer.
answered Dec 18, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...