Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

What is the relation between half life ($t_{1/2}$) and temperature for an $n^{th}$ order reaction ;$n > 2$

$\begin{array}{1 1}(a)\;ln \;t_{1/2}=ln\; A'+\large\frac{2E_a}{RT}\\(b)\;ln\;t_{1/2}=ln\;A'+\large\frac{E_a}{RT}\\(c)\;ln\;t_{1/2}=ln \;A'-\large\frac{E_a}{RT}\\(d)\;None\end{array}$

Can you answer this question?

1 Answer

0 votes
Answer: $ln\;t_{1/2}=ln\;A'+\large\frac{E_a}{RT}$ where $A'=\large\frac{2^{n-1}-1}{(n-1)a_0^{n-1}A}$
From Arrhenius equation, $k=Ae^{-\large\frac{E_a}{RT}}$
$\Rightarrow ln \;k=ln A-\large\frac{E_a}{RT}$
Also for $n^{th}$ order reaction
Taking natural log and substituting for $ln\; k$, $ln\;t_{1/2}=ln\large\frac{2^{n-1}-1}{(n-1)a_0^{n-1}}$$-ln \;A+\large\frac{E_a}{RT}$
$\Rightarrow ln A'+\large\frac{E_a}{RT}$
$ln\;t_{1/2}=ln A'+\large\frac{E_a}{RT}$, where $A'=\large\frac{2^{n-1}-1}{(n-1)a_0^{n-1}A}$
answered Dec 19, 2013 by sreemathi.v
edited Jul 24, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App