Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let $f(x)=x|x|$. The set of points where $f(x)$ is twice differentiable is


Can you answer this question?

1 Answer

0 votes
We have
$f(x)=x|x|=\left\{\begin{array}{1 1}-x^2&x<0\\x^2&x\geq 0\end{array}\right.$
$f'(x)=\left\{\begin{array}{1 1}-2x&x<0\\2x&x\geq 0\end{array}\right.$
$f''(x)=\left\{\begin{array}{1 1}-2&x<0\\2&x\geq 0\end{array}\right.$
$\Rightarrow f''(x)$ exists at every point except at $x=0$
Thus $f(x)$ is twice differentiable on $R-\{0\}$.
Hence (a) is the correct answer.
answered Dec 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App