logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $G(x)=-\sqrt{25-x^2}$ then $\lim\limits_{x \to 1}\large\frac{G(x)-G(1)}{x-1}$ has the value

$(a)\;1/24\qquad(b)\;1/5\qquad(c)\;-\sqrt{24}\qquad(d)\;None\;of\;these$

Can you answer this question?
 
 

1 Answer

0 votes
$\lim\limits_{x\to 1}\large\frac{-\sqrt{25-x^2}-(-\sqrt{24})}{x-1}$
$\Rightarrow \lim\limits_{x\to 1}\large\frac{\sqrt{24}-\sqrt{25-x^2}}{x-1}\times \frac{\sqrt{24}+\sqrt{25-x^2}}{\sqrt{24}+\sqrt{25-x^2}}$
$\Rightarrow \lim\limits_{x\to 1}\large\frac{x^2-1}{(x-1)(\sqrt{24}+\sqrt{25}-x^2)}$
$\Rightarrow \large\frac{2}{2\sqrt{24}}$
$\Rightarrow \large\frac{1}{2\sqrt 6}$
Hence (d) is the correct answer.
answered Dec 20, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...