logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Integral Calculus
0 votes

$I= \int \limits_0^1 \int x^5 (1-x^2)^{\frac{3}{2}}dx$ Find the value of I

\[\begin {array} {1 1} (a)\;\frac{11}{315} \\ (b)\;\frac{8}{315} \\ (c)\;\frac{1}{720} \\ (d)\;\frac{8}{945} \end {array}\]

Can you answer this question?
 
 

1 Answer

0 votes
$x= \sin t$
$dx= \cos t dt $
$\int \limits_0^{\frac{\pi}{2}} \sin^5 \cos^ 4 t dt$
$\cos t=k$
$-\sin t dt =dk$
$\qquad= -\int \limits_1^0 k^4 (1-k^2)^2 dk$
$\qquad= -\int \limits_1^0 k^4 (k^4+1-2k^2) dk$
$\qquad= -\int \limits_1^0 (k^8+k^4-2k^6) dk$
$\qquad= \large\frac{1}{9}+\frac{1}{5} -\frac{2}{7}$
$\qquad= \large\frac{35+63-90}{315}$
$\qquad= \large\frac{8}{315}$
Hence b is the correct answer.
answered Dec 20, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...